Frobenius functors and Gorenstein homological properties
نویسندگان
چکیده
We prove that any faithful Frobenius functor between abelian categories preserves the Gorenstein projective dimension of objects. Consequently, it and reflects give conditions on when a stable objects, singularity defect categories, respectively. In appendix, we direct proof following known result: for an category with enough projectives injectives, its global coincides injective dimension.
منابع مشابه
Mini-Workshop on Gorenstein Homological Algebra
We will introduce the notion of Gorenstein category as the convenient setup for doing Gorenstein Homological Algebra in categories of sheaves, or in general in categories without enough projective objects. We will illustrate this notion by showing that the category of Qcoh(X) of quasi-coherent sheaves on a locally Gorenstein projective scheme fits into this setup. Then we will focus on the cate...
متن کاملGorenstein Homological Dimensions of Commutative Rings
The classical global and weak dimensions of rings play an important role in the theory of rings and have a great impact on homological and commutative algebra. In this paper, we define and study the Gorenstein homological dimensions of commutative rings (Gorenstein projective, injective, and flat dimensions of rings) which introduce a new theory similar to the one of the classical homological d...
متن کاملThe Frobenius endomorphism and homological dimensions
In 1969 Kunz [Ku] proved a fundamental result, connecting the regularity of a local ring of positive characteristic with the flatness of its Frobenius endomorphism φ. This was a first indication of the important role that φ would play in homological commutative algebra, especially in reflecting basic homological properties of the ring. Some results in Peskine and Szpiro’s groundbreaking thesis,...
متن کاملQuasi-Frobenius functors with application to corings
Müller generalized in [12] the notion of a Frobenius extension to left (right) quasi-Frobenius extension and proved the endomorphism ring theorem for these extensions. Recently, Guo observed in [9] that for a ring homomorphism φ : R → S, the restriction of scalars functor has to induction functor S ⊗R − : RM → SM as right ”quasi” adjoint if and only if φ is a left quasi-Frobenius extension. In ...
متن کاملFrobenius Functors of the Second Kind
A pair of adjoint functors (F,G) is called a Frobenius pair of the second type if G is a left adjoint of βFα for some category equivalences α and β. Frobenius ring extensions of the second kind provide examples of Frobenius pairs of the second kind. We study Frobenius pairs of the second kind between categories of modules, comodules, and comodules over a coring. We recover the result that a fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.06.030